

Neutrino Oscillations with MINOS

Jeff Hartnell

University of Sussex for the MINOS collaboration

Introduction

- MINOS physics goals
- NuMI neutrino beam
- MINOS detectors
- Results:
 - Muon neutrino disappearance analysis
 - Electron neutrino appearance analysis (new!)
 - Neutral current analysis: sterile neutrino mixing
- Future plans

28 institutions 140 scientists

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab Harvard • Holy Cross • IIT • Indiana • Minnesota-Twin Cities • Minnesota-Duluth • Otterbein Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M Texas-Austin • Tufts • UCL • Warsaw • William & Mary

MINOS Overview

- Main Injector Neutrino Oscillation Search
- Neutrinos at the Main Injector (NuMI) beam at Fermilab
- Two detectors:
- Near detector at Fermilab
 - measure beam composition
 - energy spectrum
- Far detector in Minnesota
 - search for and study oscillations

MINOS Physics Goals

- Test the $v_{\mu} \rightarrow v_{x}$ oscillation hypothesis
 - Measure precisely $|\Delta m_{32}^2|$ and $\sin^2(2\theta_{23})$
- Search for sub-dominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations
 - sensitive to θ_{13}
- Other MINOS physics:
 - Search for sterile neutrinos, CPT/Lorentz violation
 - Compare v_{μ} , $\overline{v_{\mu}}$ oscillations
 - Studies of cosmic rays and atmospheric neutrinos
 - Neutrino interaction studies in the Near detector

 ν_{μ} disappearance

Neutrino Beam (NuMI)

- 120 GeV protons strike target
- 10 μs long pulse of 3x10¹³ protons every 2.2 seconds (275 kW)
- Two magnetic horns focus secondary π/K
 - decay of π/K produce neutrinos
- Variable neutrino beam energy

MINOS Detectors

- Massive
 - 1 kt Near detector
 - 5.4 kt Far detector
- Similar as possible
 - steel planes
 - 2.5 cm thick
 - scintillator strips
 - 1 cm thick
 - 4.1 cm wide
 - Wavelength shifting fibre optic readout
 - Multi-anode PMTs
 - Magnetised (~1.3 T)

MINOS Event Topologies (MC)

Hadrons

Muon Neutrino Disappearance Analysis

Experimental Approach

- Two detector experiment to reduce systematic errors:
 - Flux, cross-section and detector uncertainties minimised
 - Measure unoscillated v_{μ} spectrum at Near detector
 - extrapolate using MC
 - Compare to measured spectrum at Far detector

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L/E)$$

Far Detector ν_{μ} CC Data

- See strong energy dependent distortion of spectrum
- Energy spectrum fit with the oscillation hypothesis:

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$$

Reconstructed neutrino energy (GeV)

Allowed Region

- Fit constrained to physical region and includes 3 largest systematic uncertainties
- Results:

$$|\Delta m_{32}^2| = (2.43\pm0.13) \times 10^{-3} \text{ eV}^2$$

at 68% C.L.

$$\sin^2(2\theta_{23}) > 0.90$$
 at 90% C.L.

Most precise measurement of $|\Delta m^2_{32}|$ performed to date

Electron Neutrino Appearance Analysis (new!)

$\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Search Overview

- Sub-dominant neutrino oscillations
 - Look for v_e appearance at Far detector
 - $P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.27\Delta m_{31}^{2}L/E)$
 - also CPv and matter effects: not shown here but included in fit
 - Electron neutrino events only 2% of total (at Chooz limit)
- Select events w/ compact shower, typical EM profile
 - MINOS optimised for v_{μ}
 - $-\nu_e$ signal selection is harder
 - Steel thickness 2.5 cm = $1.4 X_0$
 - Strip width 4.1cm ~ Molière radius (3.7cm)
- Use the Near detector to determine the background

Selecting v_e Events

- 11 variables chosen describing length, width and shower shape
- ANN algorithm achieves:
 - signal efficiency 41%
 - NC rejection >92.3%
 - v_{μ} CC rejection >99.4%
 - signal/background 1:4

 University
 of Sussex

 at Chooz limit

MC Event Composition in 2 Detectors

- Primary background from NC events, also
 - high-y v_{μ} CC, beam v_{e} , oscillated v_{τ} at Far detector
- Right plot: purple shows an appearance signal at the Chooz limit ($\sin^2 2\theta_{13} = 0.15$)

Near Detector Data

- O(20%) data/MC differences in Near det.
 - not surprising, strong
 background rejection leaves
 just tails of distributions
 - such differences are expected from the uncertainties in the MC simulation of the hadronisation model
 - tuned to sparse external data
- Use a data driven technique to measure Near detector background
 - compare horn on/off data
 - fit for CC and NC components

Use measured Near detector background and MC to extrapolate to the Far detector

Preliminary Uncertainties on Background

Preliminary Uncertainties	Size of error
1.) Extrapolation systematic	6.4%
2.) Horn on/off systematic	2.7%
3.) Horn on/off statistical	2.3%
Total (sum in quadrature)	7.3%
Statistical error (data)	19%

- Statistical error dominates
- Systematic error primarily from extrapolating Near detector measurement of background to Far detector

Far Detector Energy Spectrum

- A blind analysis was performed:
 - all procedures for calculating background and signal were finalised before the Far detector data were looked at
- Expected background:

 $27 \pm 5(stat) \pm 2(sys)$

Observed events:

35

 A 1.5σ excess over background prediction

Fit the data to the oscillation hypothesis, obtain the signal prediction for the best fit point

Allowed Region

 δ_{cp}

- A Feldman-Cousins method was used
- Fit simply to the number of events from 1-8 GeV
- Best fit and 90% C.L. limits are shown:
 - for both mass hierarchies
 - at MINOS best fit value for $\Delta m_{32}^2 \& \sin^2(2\theta_{23})$
- **Results:**

Normal hierarchy (δ_{CP} =0):

 $\sin^2(2\theta_{13}) < 0.29 (90\% \text{ C.L.})$

Inverted hierarchy (δ_{CP} =0):

 $\sin^2(2\theta_{13}) < 0.42 (90\% \text{ C.L.})$

Feldman-Cousins C.L. contours for ANN

Interpretation

- A 1.5 sigma excess is well within the realms of a statistical fluctuation
- Future v_e appearance analysis:
 - will update MC and reconstruction
 - more than double statistics (already have x2 data!)
 - other analysis improvements too
 - aim to release 2nd result a year from now
- Watch this space!

Neutral Current Analysis

- Looking for sterile neutrino mixing -

Neutral Current Analysis

General NC analysis overview:

- All active neutrino flavours participate in NC interaction
- Mixing to a sterile-v will cause a deficit of NC events in Far Det.
- Assume one sterile neutrino and that mixing between ν_{μ} , ν_{s} and ν_{τ} occurs at a single Δm^{2}
- Survival and sterile oscillation probabilities become:

$$P(\nu_{\mu} - \nu_{\mu}) = 1 - \alpha_{\mu} \sin^{2}(1.27\Delta m^{2}L/E)$$

$$P(\nu_{\mu} - \nu_{s}) = \alpha_{s} \sin^{2}(1.27\Delta m^{2}L/E)$$

$$(\alpha_{\mu,s} = \text{mixing fractions})$$

PRL **101** 221804 (2008)

Simultaneous fit to CC and NC energy spectra yields the fraction of v_{μ} that oscillate to v_s :

$$f_s = \frac{P(v_{\mu} \rightarrow v_s)}{1 - P(v_{\mu} \rightarrow v_{\mu})} = 0.28^{+0.25}_{-0.28} \text{(stat.+syst.)}$$

$$f_s < 0.68 \quad (90\% \text{ C.L.})$$

Future plans

a.) Update all analyses with more than double the data set

b.) Muon antineutrino possibilities

Muon Anti-neutrino Running

- Neutrino Δm²₃₂ measurement will reach the point of diminishing returns after next result (without accelerator/beam upgrade)
- Possibility to switch beam magnetic horns to focus π^-
 - create a muon anti-neutrino beam
 - MINOS can make the first direct measurement
 - rapidly reduce the uncertainty on Δm^2_{32} by an order of magnitude

Conclusions

- MINOS has analysed 3.2x10²⁰ POT of beam data (>6.6x10²⁰ POT data now taken)
- Search for electron neutrino appearance
 - -1.5σ excess over background prediction
 - $-\sin^2(2\theta_{13}) < 0.29$ (90% C.L.) (for normal mass hierarchy, $\delta_{CP}=0$)
- Muon neutrino disappearance
 - $|\Delta m^2_{32}| = (2.43\pm0.13)x10^{-3} \text{ eV}^2 (68\% \text{ C.L.})$
 - $-\sin^2(2\theta_{23}) > 0.90 (90\% \text{ C.L.})$
- Search for sterile neutrino mixing fraction
 - $-f_s < 0.68 (90\% C.L.)$
- Muon antineutrino run possibility

Backup slides

Accumulated Beam Data

Future 90% CL contours

7.0 x10²⁰ POT

Future measurement if data excess persists.

Future limit if excess cancels with more data.

We are close to doubling the data in current running!

Beam Ve component

- Neutrino beam has 1.3% of v_e contamination from pion and kaon decays.
- Region of interest for the v_e oscillation analysis, 1-8GeV, dominated by events from secondary muon decays:

$$\bullet \quad \pi^+ \quad \to \quad \mu^+ \nu_\mu \\ \hookrightarrow e^+ \bar{\nu}_\mu \nu_e$$

• Near and Far beam v_e spectra are constrained by using v_μ events from several beam configurations.

 Uncertainties on the flux in the region of interest are ~10%.

Sidebands

Muon removed sideband

- We observe a total of 39 events.
- We expect 29±5(stat)±2(sys) events.
- Result is within 2 σ
- It is possible this is a statistical fluctuation or it might hint at an unexplained Far/Near difference.

Muon removed w/electron sideband

 Adding the electron to the muon removed events, present good agreement in PID.

- We observe a total of 159 events.
- We expect 152±13(stat)±12(sys) events.

Result is within 0.5σ

Lower PID region

 We also looked in the lower PID region. Finding no obvious disagreement.

- We observe a total of 146 events.
- We expect 132±12(stat)±8(sys) events.

Result is $\sim 1\sigma$ above expectation

Systematic Errors

FD background systematic errors Extrapolation errors

- For most systematic errors, we generated special MC with the modified parameter in Near and Far. Used this modified MC for extrapolation and calculated the difference with the standard results.
- For the main background components the larger systematics are relative energy, gains, crosstalk and relative normalization.

Horn on/off

• When beam horns are turned off, the parent pions do not get focused, resulting in the disappearance of the low energy peak in the neutrino energy spectrum.

• The consequence is a spectrum dominated by NC arising from the long tail in true neutrino energy that gets measured in our region of interest in visible energy.

• After applying the v_e selection cuts to the ND data, the composition of the selected events is thus very different with the NuMI horns on or off.

• Using the horn off spectrum which is dominated by NC, we can measure that component with better precision than in the horn on beam.

- The beam v_e flux is obtained from the v_μ CC flux which is constrained by data in the different beam configurations.
- The two main background components can be estimated using the number of data events in the horn on and horn off configurations: N^{on} and N^{off} .

$$\begin{split} \textbf{N}^{\textbf{on}} &= \textbf{N}_{\textbf{NC}} + \textbf{N}_{\textbf{CC}} + \textbf{N}_{e} & (1) \\ \textbf{N}^{\textbf{off}} &= r_{\textbf{NC}} * \textbf{N}_{\textbf{NC}} + r_{\textbf{CC}} * \textbf{N}_{\textbf{CC}} + r_{e} * \textbf{N}_{e} & (2) \\ & \qquad \qquad \text{from MC:} \\ & r_{\textbf{NC}(\textbf{CC},e)} = \textbf{N}_{\textbf{NC}(\textbf{CC},e)} {}^{\textbf{off}} / \textbf{N}_{\textbf{NC}(\textbf{CC},e)} \end{split}$$

The key is to use the **Horn off/on ratios** for each component to solve:

• Producing data-driven predictions for NC and v_{μ} CC background for the horn on configuration.

- Horn off/on ratios for v_{μ} CC and NC selected events match well between data and MC after fiducial volume cuts.
- Similar ratios are used to solve the horn on/off equations.

MC error statistical plus systematic.

ND data-driven background

Results from the Horn on/off method

• The NC and v_μ CC components for the standard beam configuration are simultaneously solved in the horn on/off method and are by definition equal to the data after beam v_e subtraction.

MRCC

Studying hadronic showers using muon removal technique

- Remove the muon track in a selected v_{μ} CC event and use the rest as a hadronic shower only event.
- We use events that pass our v_{μ} Charged Current event selection, i.e. that have a well defined track.
- Well understood v_{μ} CC spectra, with well known efficiency and purity from the v_{μ} disappearance analysis.

Muon Removed Charged Current events ⇒ MRCC events

Hadronic shower modeling in the Ve selected data and muon-removed data

- We apply the v_e selection to the standard data and MC as well as to the Muon Removed data and MC.
- Discrepancy with the model shows the same trend not only in energy but in shower topology for both sets.
- Thus modeling of the hadronic shower is a major contribution to the disagreement.
- As the MRCC sample is independent, we can use it to obtain a data-driven correction to the model.

Overall disagreement:

- 16.6% data/MC
- 13.8% MR data/MC

Hadronic shower modeling in the Ve selected data and muon-removed data

- We apply the v_e selection to the standard data and MC as well as to the Muon Removed data and MC.
- Discrepancy with the model shows the same trend not only in energy but in shower topology for both sets.
- Thus modeling of the hadronic shower is a major contribution to the disagreement.
- As the MRCC sample is independent, we can use it to obtain a data-driven correction to the model.

Using MRCC as a data-driven correction

 We use the data/MC ratio from MRCC to obtain a data-driven correction that is applied to the standard NC events as a function of energy.

$$NC_i^{corr} = \frac{MRCC_i^{data}}{MRCC_i^{MC}} \times NC_i^{MC}$$

- The number of v_{μ} CC events is taken from the number of events in the data minus the corrected NC and beam v_e events.
- Differences between NC and MRCC showers introduces a systematic error that is difficult to quantify.

Secondary separation method

Far detector selected events

Ve Selected Far Detector Data

Preselected data in the FD as a function of PID compared to the corrected MC.

- We observe a total of 35 events.
- We expect 27±5(stat)±2(sys) background events.

Results are 1.5σ above expected background.

Far Data v_e Selected Distributions

35 events seen for 3.14x10²⁰ POT

Library Event Matching

Alternative selection algorithm

Library Event Matching (LEM)

What is the likelihood that two events come from the same hit pattern at the photomultiplier level?

- Compare each input event to large library of MC v_e CC and NC events.
- Select 50 best matches according to the likelihood that two events have the same hit pattern in position and energy deposition.
- Construct discriminant variables from the properties of the 50 best matches, eg. fraction of the 50 best matches that are v_e CC.

Selecting Ve events with LEM

fraction of electron neutrino events in 50 best matches

- 3 variables combined in a likelihood as a function of energy.
- LEM algorithm has better signal efficiency and background rejection.
- Sidebands may indicate an unexplained Far/Near difference to which this method would be more sensitive.

Secondary selection method

 $\Delta m^2_{32}=0.0024 \text{ eV}^2, \sin^2\theta_{23}=1.0$

CC Analysis

Alternative Models

Two alternative disappearance models are disfavoured

Decay:

Reconstructed neutrino energy (GeV)

$$P_{\mu\mu} = \left(\sin^2(\theta) + \cos^2(\theta) \exp(-\alpha L/2E)\right)^2$$

V. Barger et al., PRL82:2640(1999)

$$\chi^2$$
/ndof = 104/97

$$\Delta \chi^2 = 14$$

disfavored at 3.7σ

Decoherence:

$$P_{\mu\mu} = 1 - \frac{\sin^2 2\theta}{2} \left(1 - \exp\left(\frac{-\mu^2 L}{2E_v}\right) \right)$$

G.L. Fogli et al., PRD67:093006 (2003)

$$\chi^2$$
/ndof = 123/97

$$\Delta \chi^2 = 33$$

disfavored at 5.7σ

Neutrino Δm² sensitivity evolution

